3rd Central European Civil Engineering Meeting - Cecem 2018 Koszalin, Poland

Performance and optimization of pre-stressed beam with respect to shape dimensions

Tuan Duc Le, Pavlína Matečková, Petr Konečný

June 4 – 8, 2018

Motivation

- To prepare simplified numerical codes for evaluation of bending resistance and deflection of a T-beam.
- An extension of simple probability-based model (Le *et al.*, 2018*) for resistance of a simply supported prestressed concrete beam.
- Idea came from the project related to preparation of advanced precast concrete involving ZPSV copmany and IPM CAS.

(*) Le, D. T. *et al.* (2018) 'Time dependent variation of carrying capacity of prestressed precast beam', *IOP Conference Series: Earth and Environmental Sci.,* 143(2018) 012013, IOP Publishing, doi:10.1088/1755-1315/143/1/012013.

- Introduction
- Material properties
- T-beam bending resistance and deflection
- Probabilistic modelling
- Numerical examples
- Sample section optimization
- Summary
- Conclusions

Introduction

- Goals:
 - Set up numerical procedures for evaluation of bending resistance and deflection of the T-beam.
 - Consideration of random variation of timedependent concrete strength and elastic modulus.
 - Assess performance of pre-stressed concrete beam with respect to section optimization.

Introduction (cont.)

- Methodology:
 - Set up a simple model for the probability-based bending resistance and deflection computation of a simply supported pre-stressed concrete T-beam.
 - Prepare a procedure for the estimation of time dependent bending resistance and deflection of the beam using Matlab environment.

Introduction (cont.)

• *Factors to be considered:*

- Availability of time dependent behavior of basic properties of concrete:
 - Elastic modulus
 - Compressive strength
- Position of pre-stressing tendons in the section.

Introduction (cont.)

• Used means:

+ Monte Carlo simulation based approach.

+ Normal distributions of compressive strength and elastic modulus of concrete as well as effective height of the cross section.

+ Matlab compatible environment.

Approximation of considered elastic modulus time dependent behavior (C50/60): $E_{c,cyl}(t) = 4.3067 \ln(t) + 23.537$.

Material properties (cont.)

Approximation of considered cylinder strength time dependent behavior (C50/60):

 $f_{\rm c,cyl}(t) = 12.845\ln(t) + 33.627$

Material properties (cont.)

Elastic modulus of concrete sample at *t* days :

$$E_{\rm c,cyl}(t) = \mu \left(E_{\rm c,cyl}(t) \right) + cov \left(E_{\rm c,cube}(28) \right) \cdot \mu \left(E_{\rm c,cyl}(t) \right)$$

 $\mu(E_{c,cyl}(t))$: mean value of elastic modulus of sample at age t;

 $cov(E_{c,cube}(28))$: coefficient of variation of elastic modulus of sample, t = 28 days.

Material properties (cont.)

Cylindrical strength of sample at *t* days :

$$f_{\rm c,cyl}(t) = \mu \left(f_{\rm c,cyl}(t) \right) + cov \left(f_{\rm c,cube}(28) \right) \cdot \mu \left(f_{\rm c,cyl}(t) \right)$$

 $\mu(f_{c,cyl}(t))$: mean value of cylindrical strength of sample at age *t*; $cov(f_{c,cube}(28))$: coefficient of variation of cubic strength of sample, t = 28 days.

Computation model:

Height of compression zone is larger than the flange thickness

Ultimate bending moment resistance:

 $M_r = F_{c1}(d - 0.4x) + F_{c2}(d - 0.5h_f)$

 F_{c1} : compressive forces (kN) in concrete from web:

 $F_{c1} = 0.8 f_{c,cyl} b_w x,$

 F_{c2} : compressive forces (kN) in concrete from flange:

$$F_{c2} = 0.8f_{c,cyl}(b - b_w)h_f$$

x : height of compression zone (m):

$$x = \frac{F_{sp} - F_{c2}}{0.8 f_{c,cyl} b_W}$$

 F_{sp} : total prestressing force (kN) in all layers of tendons after relaxation losses, computed as:

 $F_{sp} = \sum N_{xi} A_p sigma_p st$

sigma_pst : prestressing stress (kPa) after relaxation losses:

<i>t</i> (hour)	7.	2 500	.000
sigma_pst(kPa)	sigma_pmax	sigma_pmax× 0.85	sigma_pmax× 0.85 × 0.85

sigma_pmax : maximum prestressing stress (kPa) of tendons

Height of compression zone is smaller than the flange thickness

Ultimate bending moment resistance: $M_r = F_c(d - 0.4x)$

Compressive force in concrete: $F_c = 0.8 f_{c,cyl} b x$

Height of compression zone:

$$x = \frac{F_{sp}}{0.8f_{c,cylb}}$$

Deflection of the T-beam

Instant deflection at middle of the beam in the time when the test of ultimate carrying capacity is conducted:

 $w = w_g + w_p + w_F$

 w_g : deflection (m) due to dead load

 w_p : deflection (m) due to prestressing force

 w_F : deflection (m) due to induced moment without prestressing.

Probabilistic modelling of T-beam

Monte Carlo simulation technique:

Creating 3000 MC samples

Running the model

Analyzing the data

Probabilistic modelling of T-beam

 Generation of random variables considering normal distribution:

Transformation formula:

 $N(\mu,\sigma) = \mu + \sigma \times N(0,1)$

For time dependent parameters:

 $N(\mu,\sigma,t) = \mu(t) + \sigma(t) \times N(0,1)$

Numerical examples

effect of conventional reinforcement is neglected

➤ top layer of tendons was not considered in the calculation

Deterministic solution:

Geometry of section A: h = 0.56 m, b = 0.9 m, $h_f = 0.18$ m, $b_w = 0.31$ m, c = 0.08 m, $t_d = 0.05$ m, d = 0.52 m, l = 7 m.

Geometry of section B: h = 1.2 m, b = 0.9 m, $h_f = 0.22 \text{ m}$, $b_w = 0.31 \text{ m}$, c = 0.08 m, $t_d = 0.05 \text{ m}$, d = 1.12 m, l = 7 m.

 $A = 0.5018 \text{ m}^2$

Deterministic solution:

Prestressing tendons: $A_p = 150 \times 10^{-6} \text{ m}^2,$ $f_{p01} = 1687 \times 10^3 \text{ kPa},$ $sigma_pmax = 1400 \times 10^3 \text{ kPa}.$

Limit strain of concrete and steel: + $\varepsilon_{cu} = 0.0035$, + $\varepsilon_{ud} = 0.02$.

Concrete properties: + ρ = 2390 kg/m³, + E_c = 26.522 kPa, + $f_{c,cyl}$ = 42.531 kPa.

Numerical example A

Deterministic solution:

Results from deterministic analysis of considered T-beam ($A = 0.2798 \text{ m}^2$)

Deterministic analysis results with A = 0.2798 m ²	t < 3 days = 72 hours (at $t = 2 \text{ days}$)	$72 \text{ hours} \le t \le 500.000 \text{ hours}$ (at $t = 14 \text{ days}$)	$t \ge 500.000$ hours (at $t = 28$ days)
Bending moment resistance, <i>Mr</i> (kNm)	1,227.4	1,076.1	1,080.5
Vertical deflection, w, at middle of the beam under the ultimate loading (m)	0.0200	0.0135	0.0125

Numerical example B

- Deterministic solution:
- Results from deterministic analysis of considered T-beam ($A = 0.5018 \text{ m}^2$)

Deterministic analysis results with <i>A</i> = 0.5018 m ²	t < 3 days = 72 hours (at t = 2 days)	72 hours ≤ <i>t</i> < 500.000 hours (at <i>t</i> = 14 days)	t≥500.000 hours (at t = 28 days)	
Bending moment resistance, <i>Mr</i> (kNm)	2,739.4	2,361.3	2,365.7	
Vertical deflection, w, at middle of the beam under the ultimate loading (m)	0.0047	0.0031	0.0029	

Deterministic solution:

Bending resistance of considered T-section in this study versus bending resistance of rectangular section investigated in (Le *et al.*, 2018)

	Bending m	oment resistar	Increase (+) / Decrease (-) of Mr		
Age of concrete (days)	T-section, A = $0.2798m^2$ (a)	T-section, <i>A</i> = 0.5018m ² (b)	Rectangular section, A = 0. 504m ² (Le <i>et al.</i> , 2018) (c)	(a) vs. (c)	(b) vs. (c)
t=2	1,227.4	2,739.4	1,458.4	- 15.8 %	+ 87.8 %
t = 28	1,080.5	2,365.7	1,511.8	- 28.5%	+ 56.5%

Probabilistic solution:

$$\begin{split} E_{cm}(t) &= (f_{cm}(t)/f_{cm})^{0.3} E_{cm} \\ f_{cm}(t) &= \beta_{cc}(t).\, f_{cm} \; , \end{split}$$

Parameter	Notation	Mean	Coefficient of variation	Transformation
Elastic modulus of concrete (kPa)	$E_{c,cyl}(t)$	eq. <mark>X</mark> .1	0.0388	$\mu\left(E_{c,cyl}(t)\right) +$
Concrete strength (kPa)	$f_{c,cyl}(t)$	eq. <mark>X</mark> .2	0.0388	$ \mu\left(f_{c,cyl}(t)\right) + $
Effective height of the beam (m)	d	0.52	0.0096	0.0388×N(0,1) ^(*) d=0.52+ 0.005×N(0,1)
Thickness of the web (m)	b_W	0.31	-	-
Thickness of the flange (m)	hf	0.18	-	
Loading span (m)	1	6.85	-	-
Width of flange of the considered beam (m)	Ь	0.9	-	-
Height of cross section of the beam (m)	h	0.56	-	-
Cross-sectional area of prestressing tendons (m ²)	Ap	150x10 ⁻⁶	-	-
0.1% proof-stress of	<i>f</i> p01	1687×10 ³	-	-
prestressing steel (kPa) Thickness of concrete covered layer (m)	с	0.08	-	-

(X.1)

(X.2)

(*): Please be noted that $E_{c,cyl}(t)$ and $f_{c,cyl}(t)$ are considered as uncorrelated parameters here.

Distribution of bending moment resistance (kNm):

Bending moment resistance of cross section of the T-beam

Age of	Bending moment resistance of the cross section of the T-beam (kNm)							
concrete <i>t</i> (days)	Mr05 (5%)	Mr50 (50%)	Mr95 (95%)	Deterministic analysis				
2	1,206.072	1,227.498	1,248.923	1,227.4				
14	1,058.065	1,075.979	1,093.892	1,076.1				
28	1,062.720	1,080.230	1,097.740	1,080.5				
365	1,072.400	1,090.412	1,108.424	1,090.5				

Vertical deflection of the T-beam

A 6	Vertical deflection (m) a	al deflection (m) at the middle of the T-beam				
Age of concrete	Probabilistic solution	Deterministic colution				
(days)	(maximum value)	Deterministic solution				
2	0.0166	0.0200				
14	0.0111	0.0135				
28	0.0113	0.0125				
365	0.0092	0.0098				

Sample section optimization

Input parameters for the optimization

Geometry of the section: h = 0.56 m, b = 0.9 m, c = 0.08 m, $t_d = 0.05 \text{ m}, d = 0.52 \text{ m}, l = 7 \text{ m}.$ $h_f \text{ and } b_w \text{ are variables}$

Distributions:

 $E_{c,cyl}(t)$: normal distribution $f_{c,cyl}(t)$: normal distribution h_f : uniform distribution b_w : uniform distribution

• Partial results in case of t = 28 days

□ Partial results in case of t = 28 days

□ Partial results in case of t = 28 days

• Overall results

Two conditions of section optimization:

✓ vertical deflection (*w*) of the cross section is always smaller than maximum allowable vertical deflection (*w_lim*);

✓ bending moment resistance of the crosssectional T-beam (M_r) is larger than minimum value of bending moment resistance of the beam at concrete age of 28 days.

Overall results

		Vertical	deflect	ion	Bendin	g resista	nce	Area of	cross sec	tion		
Out on No.	Option No.	м (ш)	Percentage of the best (%)	weight	<i>M</i> £ (kNm)	Percentage of the best (%)	weight	A (m ²)	Percentage of the best (%)	iveight	Score (%)	$b_w = 0.3079 \text{ m}$ $h_f = 0.1721 \text{ m}$
1	L	7.6×10 ⁻⁶	93	0.3	1098.8	95	0.2	0.2743	97	0.5	95.4	\supset
2	2	1.3×10 ⁻⁶	9 7	0.3	1100.9	96	0.2	0.2897	94	0.5	95.3	
3	3	1.2×10-7	99	0.3	1101.5	97	0.2	0.3016	90	0.5	94.1	
4	1	7.8×10 ⁻⁷	98	0.3	1095.3	90	0.2	0.2940	93	0.5	93.9	
5	5	2.9×10 ⁻⁶	96	0.3	1090.6	81	0.2	0.2877	95	0.5	92.5	
6	5	8.1×10 ⁻⁶	93	0.3	1086.9	71	0.2	0.2593	99	0.5	91.6	
7	7	8.6×10 ⁻⁶	93	0.3	1092.6	85	0.2	0.2933	93	0.5	91.4	
8	3	6.4×10 ⁻⁵	81	0.3	1092.8	86	0.2	0.2532	99	0.5	91.0	
9)	6.3×10 ⁻⁵	81	0.3	1100.1	96	0.2	0.2810	95	0.5	91.0	
1	0	1.1×10 ⁻⁶	9 7	0.3	1098.4	94	0.2	0.3110	86	0.5	90.9	Reason of the second se

Overall results

1849

A simple probability-based model for the bending resistance computation of a simply supported pre-stressed concrete T- beam is set up.

Numerical codes for evaluation of bending resistance and

deflection of the T-beam were composed.

the T-beam.

Simple MC-based section optimization of

Conclusions

➤ Computation of bending resistance and vertical deflection over the time of a prestressed precast concrete T-beam was done.

➢ Randomness of selected parameters were considered.

➤ The performance of the T-beam under prestressing was studied via numerical example by application of Monte Carlo simulation technique.

Conclusions (cont.)

➢ Dimensions of T-section of the beam in the example were also optimized based on:

- maximum bending resistance
- best performance of vertical deflections.

➢ Optimization results are consistent with those of bending resistance computation part.

The built procedure for section optimization seems to be applicable for prestressed concrete T-beam.

Conclusions (cont.)

This work should be further developed with:

- taking into account of tendons in the top part of the section and longitudinal reinforcement;
- considering impacts of shear resistance;
- studying effects of cracking of the beam.

Thank you for your attention

