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1345 Brno University of Technology, Faculty of Civil Engineering, Institute of Building Testing,
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6.1. Introduction

Determination of the real shrinkage development of cement-based composites is
ever more important not only for structural engineers and concrete manufacturers
but it is also a very topical problem in the field of the development of
mathematical models for the creep and shrinkage prediction in concrete structures
(RILEM TC 2015). Advancement in technology and composition of building
materials in turn requires advancement in test procedures used for the
determination of new materials’ physical and mechanical parameters. The main
problem in the field of experimental measurement of shrinkage in cementitious
materials is to capture the total volume change due to chemical reactions, plastic
settlement and desiccation while recording all the characteristics that more or less
influence the process and magnitude of shrinkage in particular stages of their
setting and hardening.

The main aim of performed experiment was to find measurement equipment and
test procedure suitable for obtaining comprehensive information about the
structural and volume changes which are in progress especially during the early
stage of cement composites setting and hardening.

6.2. Theoretical background

Immediately, after cement is mixed with water, structural and volumetric changes
in fresh mixture are in progress (Bentz 2008, Newman & Choo 2003, Neville
2011, Bella et al. 2016). These changes are caused by many factors related to the
environmental and curing conditions (Havlasek 2014) as well as to the properties
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and ratio of raw materials used in the fresh mixture (ed. by Kovler et al. 2006).
One of the most monitored phenomenon, which is closely connected with above
mentioned matters, is early-age cracking (ed. by Bentur 2003, Deshpande et al.
2007). The high risk of early cracks initiation and propagation occur especially
in restrained (Ba et al. 2008, Dong et al. 2014, Loser & Leemann 2009) and
massive structures (Lin et al. 2012, Nehdi et al. 2014) because of stresses
developed by volumetric changes due to the chemical reactions, temperature
development or drying. One of the current approaches to determination of
relationship between structural and volumetric changes is the simultaneous
measurement of relative length changes and acoustic responses due to chemical
reactions, particles solidification or cracking. In recent years, the method of
acoustic emission (AE) has also been widely used as a supplemental
measurement method for the non-destructive monitoring of the changes in the
specimen’s internal structure during static and dynamic loading tests as well as
for the monitoring of the behaviour of composite materials during setting and
hardening (Topoldi & Pazdera 2014, Topolat et al. 2016), (Qin et al. 2014,
Pirskawetz et al. 2006). The previous studies shown that the AE technique is able
to detect the early-age crack formation and cracking progress during the
cementitious composite solidification (Qin et al. 2014, Kim & Weiss 2003).

Scientific sources provide a number of approaches to determining the value of
particular types of concrete and mortars volume changes (shrinkage, swelling),
e.g. (Reinhardt & Grosse 2005, PCA 2017, Holt 2001), (Kratochvil et al. 2014,
Barcelo et al. 2005 Soliman & Nehdi 2011, Mazzoli etal. 2015, Amin et al. 2010,
Zhang et al. 2015, Chen et al. 2011, Chen et al. 2010, Yilmaztiirk et al. 2004).
However, these are mostly methods for separate determination of individual
components of shrinkage in the early age. In these cases, the measurement is
started immediately or very early after cement is mixed with water. Measurement
methods intended to the long-term monitoring of the shrinkage progress due to
drying are mostly based on the determination of the relative length changes and
the measurement, in most cases, begins after specimens have been removed from
their moulds, which is typically no sooner than after 24 hours of ageing. Such
methods are summarized e.g. in (Newlands et al. 2008) or they are standardized
in the national standards of various countries.

In important or complicated concrete structures, shrinkage is measured directly
on a concrete element using a special type of wire strain gauge designed to be
embedded in the concrete (Norisham et al. 2008, ed. By Tanabe et al. 2009,
Strasky et al. 2014, Zich 2011) or other advanced monitoring technique (Ma et
al. 2015).

Guidelines reflecting the recent advances in theoretical and experimental research
in the field of the creep and shrinkage of cement composites (especially concrete)
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have been published under RILEM TC-242-MDC (chair Zden¢k P. Bazant). An
article from 2015 (RILEM TC 2015) underlines the necessity of measuring
weight losses, especially at the early stage of cement composite ageing, because
this characteristic is an important input parameter for the development of
mathematical models which are used for the prediction of concrete volume
changes. The uncertainty involved in extrapolating drying shrinkage can be
considerably reduced in case the weight loss is measured simultaneously with
shrinkage (RILEM TC 2015).

6.3. Materials and methods
Testing techniques

In order to select measurement equipment and test procedure suitable for
obtaining the relevant measurement outputs, several specifications, which were
based on the experience gained over the last ten years in the field of concrete
volume changes measurement, were taken into account. The main emphasis was
posed on the accuracy, ability to setup the continual measurement with the
adjustable storage frequency, ability of continuous measurement of all
investigated parameters without specimens handling and ability of simultaneous
measurement of all investigated parameters such as length changes, mass losses
caused by free drying, temperature development inside the test specimen,
acoustic responses of internal structure changes and ambient temperature and
relative humidity.

Based on the above-mentioned requirements following measurement equipment
was selected. The measurement of length changes was performed using the u-
shaped stainless steel shrinkage drains of 1000 mm 1n length and with 60 % 100
mm in cross-section (Schleibinger Testing Systems 2017) were used. The
gauging bases are defined by two anchors placed on heads of drains. One anchor
1s fixed and the other one is movable and sliding on three wheels. To avoid wall
friction the drains were covered with polyethylene foam mat (MIRELON) of 2
mm thickness. The length changes were measured along the central axis of the
specimens using an Inductive Standard Displacement Transducers WA2T (HBM
2017) with measuring range of 2 mm. The greatest linearity deviation of these
sensors is 0.2% of measuring range. The sensors leaning against the movable
anchor of the drain were mounted to the drain in desired position.

This measurement equipment is primarily designed for shrinkage measurement
in the early stage of cement composites setting and hardening. In order to
facilitate the subsequent long-term measurement of deformations special markers
(Kucharczykové et al. 2011) were designed at the Brno University of Technology
(BUT). These markers were embedded into the upper surface of the composite
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placed in the shrinkage drains (see Fig. 6.1.). In this way, two gauging bases were
created for further measurement (see Fig. 6.1., Fig. 6.2.). This arrangement
enabled the capture of the total relative length changes of the concrete since the
moment the concrete is placed into the drain until its long-term ageing after the
specimen is removed from the shrinkage drain.

To provide the continuous measurement of mass losses a special weighing table
(Vymazal et al. 2015) was also designed at the Brno University of Technology
(BUT). The measurement accuracy is guaranteed by a rigid frame and high
sensitivity single point load cells of the accuracy class C3MR (HBM 2017). The
max. weight capacity is 3kg. The construction and measurement details are under
national patent protection (Vymazal et al. 2015).

The shrinkage drains filled with the fresh mixture were placed onto a special
weighing table which enabled the simultaneous measurement length changes and
mass losses of the test specimens. Measurement data obtained from drains and
weighing table were automatically stored using a universal amplifier Quantum X
- MX 840 (HBM 2017) with 8 individually configurable inputs (electrically
isolated). The data storage frequency was 5Hz. The setup of particular
measurement devices before the start of measurement and data storage frequency
was performed using the PC software CatmenEasy.

In order to measure temperature development inside the test specimens the
platinum thermal sensor COMET PT 1000 was embedded at the end of the
shrinkage drains. Measured data were storage with a period of 5 min using
a thermometer-logger SO0151 for 4 external probes (COMET 2017).

Changes in the specimens’ internal structure during the early stage of setting and
hardening were monitored using the non-destructive passive method of AE.
Magnetic AE sensors (type MDK13 with 35 dB preamplifier) were placed in
positions predefined by embedded steel probes (waveguides), see Fig. 2 and Fig.
3, which provide the transfer of acoustic waves generated during material’s
setting and hardening to the AE sensor.

The internal structure changes were monitored with two AE sensors placed in
each shrinkage drain during the measurement — the first one was placed near the
movable head of the drain, the second one was located near the other end of the
drain. In this way, the progress of events during cement composites setting and
hardening was continuously recorded. AE signals were detected by the measuring
equipment DAKEL XEDO with two channels for approx. 72 hours. Universal
measurement and diagnostic system DAKEL XEDO was used for measurement.
This equipment allows sampling of the signal from the AE sensors (speed up to
8 MSamples/sec), enumerates standard acoustic emission parameters, process
emission events parameters to localize the feasible (potential) emission source.
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The measurement of AE was started simultaneously with the start of relative
length changes, mass losses and temperature measurement. In order to evaluate
the origin of microcracks during setting and hardening, the measurement was
focused on the number of overshoots which exceed the pre-set threshold, which
1s the most commonly used parameter of the acoustic emission activity. The
presence of a high number of microcracks in the specimen is reflected in the high
acoustic emission activity.

The ambient temperature and relative humidity were continuously recorded with
a period of 15 min by an automatic gauging station COMET (COMET 2017).
The above-described measurement equipment and configuration enabled
simultaneous measurement of all the parameters being investigated.

The final arrangement of the measurement devices before starting the
measurement is shown in Fig. 6.1.

Fig. 6.1. Arrangement for long-term measurement using Hollan’s strain gauge (1 —
markers for long-term measurement)

The measurement in shrinkage drains can only be started after the concrete has
set a little so that it does not push out the movable head of the drain with its own
weight. With respect to the consistency of the fresh mixture, measurement was
started approximately one hour after the composite was poured into the drains.
Investigated parameters was measured in the drains placed on the weighing table
in a laboratory at temperature of 21 + 2 °C and relative humidity of 60 + 10 %
until the specimens was approx. 3 days old.
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Fig. 6.3. Arrangement of measurement devices (1 — markers for long-term
measurement; 2 — AE sensor with waveguide; 3 — temperature sensor; 4 —
weighing table; 5 — shrinkage drain)

To verify the sensitivity and accuracy of the weighing table the top surface of the
test specimens was not protected from drying. After 3 days the specimens were
extracted from the drains and stored in a laboratory at a stable temperature of 21
+ 2 °C and relative humidity of 60 + 10 %. Further measurements were performed
using a Hollan’s strain gauge which was fixed onto the surface of the specimens
(see Fig. 1). The positions of the gauging points were predefined by the markers
embedded at a spacing of 200 mm. The specimens were left to dry freely for the
entire time of the measurement and were weighed at regular intervals.

Materials

The main aim of the experimental part was to verify the setup of the test
equipment and test procedure intended for the determination of the volume
changes in cementitious composites, especially in their early stage of setting and
hardening. For this purpose, a fine-grained cement composite with a relatively
high w/c ratio was designed and manufactured. The composition is based on the
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standard CSN EN 196-1 (Part 1 2005). The fresh composite was made with
quartzite sand with the maximum nominal grain size of 2 mm standardized
according to CSN EN 196-1 (Part 1 2005), Portland cement CEM 1 42.5 R and
water in ratio of 3:1:0.5 (S:C:W). A mixing device with controllable mixing speed
was used for the preparation of the fresh mixture. The basic information about
the composition, manufacturing and properties of the fresh composite are given
in Table 6.1. The properties of the fresh composite were determined in
accordance with CSN EN 1015-3 (Part 3 2000) and CSN EN 1015-6 (Part 6
1999). The basic properties of hardened composite are summarized in Table 6.2.

Table. 6.1. Properties of fresh composite

Composite | Composition | w/c Mixing speed Workability | Bulk density
ID [S:W:C] [-] | [revolutions/min] [mm)] [kg/m?]

0 04042016 3:1:0.5 0.5 20 140 2200

Table. 6.2. Properties of hardened composite

Age of specimens [days]
COH;I]))Osite 3 28 90 3 28 90
Compressive strength Dynamic modulus of elasticity
[N/mm2] [N/mm2]
(standard deviation) (standard deviation)
27.28 36.53 | 37.62 27340 27735 28693
0_04042016 1 o0y | 2.57) | (2.32) (669) (724) | (492)

Note: For the purpose of performed experiment, the test specimens were intentionally no
protected from drying during the whole time of ageing. This inappropriate way of curing
probably led to decrease in the mechanical properties of the material being investigated.

6.4. Results and discussion

The results of the measurements performed are presented below. Fig. 6.4. shows
the progress of relative length changes, relative mass losses and temperature
inside the test specimens measured in the early stage of setting and hardening.
This method of displaying the recorded data provides a better idea about the
relations between the phenomena being investigated. Shortly after the start of the
measurement, swelling (length increment, expansion) of the test specimens was
recorded. However, decrease in mass of the test specimens was recorded during
the same time period as well. An explanation of this phenomenon can be found
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in the composition of the cement composite and in the development of the
temperature measured inside the test specimens. Looking on the material
composition it can be stated that the w/c ratio of this composite was rather high
(see Tab. 6.1.). No component segregation in the fresh mixture was observed
either during the mixing or during the manufacturing of the test specimens. On
the other hand, a relatively large amount of water rose to the upper surface of the
test specimens after their manufacturing and storing. This phenomenon is
commonly known as bleeding. After the plastic settlement has finished, the water
which had bled onto the specimen upper surface is drawn back into the setting
and later hardening cement paste, re-filling the pores created during cement
hydration. This water re-absorption is one of the factors which cause the swelling
of concrete (Holt 2001). Another substantial factor which affects the early
swelling of cementitious composites is the thermal expansion due to the heat
generated during hydration. The phenomenon of swelling/expansion is clearly
visible from the measurements in the first 24 hours of ageing when the hydration
heat is generated at the highest rate (approx. 200 J/g per 24 h) (Rovnanikova &
Zalud 2015). The progress of temperature measured in the specimens confirmed
this (see Fig. 4). The highest temperature was recorded approx. 10 hours after the
start of measurement. At the same time, a surge of swelling is also visible. Its
highest magnitude of 75 um/m was recorded after 22 hours counted from the start
of measurement. Concerning the recorded progress of mass losses, it is clearly
visible that the sharp loss in specimens’ mass was recorded just before reaching
the maximum temperature.

100 —relative length changes () = 100
— - - relative mass losses (m) <
E! 50 - % 50 E‘)
w E 2
é’o 0 -~ T T T T T T : | O E
s N o 2
S 3 2 g
= ~ 172}
£, -50 - . 1 50 3
E . = g
o Y L
2 -100 - .~ -100 £
= o
o el &

-15¢ +4—r-—m—m—————————— === -150

0 10 20 30 40 50 60 70
Time [hours]

(2)

Fig. 6.4. Progress of relative deformations, relative mass losses and temperature
measured inside the test specimens
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Fig. 6.4. cont. Progress of relative deformations, relative mass losses and temperature

measured inside the test specimens

Fig. 6.5. shows the progress of relative length changes and mass losses in relation
with the AE events obtained during the monitoring of the changes in the
specimens’ internal structure during the early stage of setting and hardening by
means of AE measurement. The acoustic waves recorded by measurement
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equipment were conversed to the number of overshoots for the purpose of results
interpretation. This number of overshoots indicates the number and size of
structural changes being in progress within a certain period. The more activity
there is in the specimens’ internal structure, the more overshoots are recorded per
an interval of time. Fig. 6.5.(a) clearly shows that the activity recorded by the AE
corresponded well with the progress of the composite relative length changes.
The first high number of overshoots was recorded immediately after the start of
the measurement. In this early stage of composite ageing, plastic settlement takes
place, which is reflected in the high numbers of AE overshoots. After plastic
shrinkage had finished, a period of swelling started. During the whole period of
swelling only very low activity was recorded. The numbers of overshoot started
to increase immediately after the swelling had stopped and the composite started
to shrink (see Fig. 6.5.(a)). Based on the results, it can be assumed that no
important internal changes are occurring during the stage of swelling. It means
that probably neither water re-absorption nor thermal expansion are the initiators
of cracks, in this case, and the composite gains strength without internal cracking.
It should be emphasized that in this case the shape of specimen, especially its
cross section, plays an essential role.
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Fig. 6.5. Progress of relative deformations, mass loss and AE overshoots
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Concerning the progress of total volume changes, the period of initial expansion
(swelling) appears not to be very significant in terms of its magnitude (see
Fig. 6.6.(a)). However, from the perspective of strength development this
phenomenon seems fairly interesting. Early age volume changes can influence
tensile stress and crack formation in a hardened cement composite which is then
visibly reflected in later development of its tensile and compressive strength as
well as in the resistance of the composite to later crack formation and
propagation. The period of swelling occurs within the first 24 hours when the
cement composite is very delicate and the risk of internal cracking is very high.
As stated above, the results of the measurements presented in Fig. 6.5. show
a very low activity in the internal structure of hardened composite during the
period of swelling — it can be assumed that no significant cracks are created. The
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initial expansion delayed the start of shrinkage by more than 20 hours. This delay
can be of great benefit to the later development of physical and mechanical
properties of the cement composite. The absence of early cracking in this period
may result in overall increase in durability of the cement composite element.
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Fig. 6.6. Progress of relative deformations and mass losses measured over the whole
time of the composite’s ageing

6.4 Conclusions

The measurement technique described in this chapter and used in the experiment
satisfies the requirements for the early age diagnosis of the material’s behaviour.
Readings obtained from the shrinkage drains, weighing table, apparatus for



6. Comprehensive Monitoring of the Shrinkage and Structural Changes of ... 93

detection of AE and devices for temperature and humidity measurement provided
comprehensive information about the behaviour of the material especially in the
early stage of its setting and hardening.

In conclusion, the measurement results suggest the following:

e Measurements have to start as soon as the cement composite has been poured
into a mould if a comprehensive assessment of the parameters influencing
volume changes is to be made. The consistency of the fresh mixture as well
as the capabilities and limitations of the measurement equipment must be
taken into account. The shrinkage drains can be considered suitable for the
measurement of volume changes in cement composites of varied workability.
The measurement should usually be started no later than one hour after the
composite is poured into the drain. Generally speaking, the lower the
workability of the composite, the sooner the measurement can begin.

e Continuous measurement of the mass losses of the cement composite caused
by free drying of the specimen surface provided useful data for result
interpretation of the measurement of volume changes in cement composites.
This data then be of great use in creating new mathematical models designed
for the prediction of volume changes in cement composites as well as in fine-
tuning existing ones. The measured progress of mass losses corresponds well
to the progress of relative length changes and to the progress of temperature
measured inside the test specimens. The relationship between relative length
changes and relative mass losses was observed over the whole time of its
ageing (see Fig. 6.5.(b) and Fig. 6.6.(b)). However, the initial part of the
curve is influenced by water re-absorption and thermal expansion. Just before
reaching the maximum temperature a sharp loss in specimen mass was
recorded (see Fig. 6.4.(c)). The measurement results can provide information
as to how much the water loss and release of hydration heat contribute to the
overall progress of volume changes.

e The method of acoustic emission appears to be another suitable tool for
determining the structural changes and occurrence of micro-cracks during the
setting and hardening of a cement composite. In general, the higher the
numbers structural changes and micro cracks, the greater a number of AE
overshoots is recorded. The number of micro-cracks in the cement composite
essentially affects its final mechanical properties (i.e. strength, modulus of
elasticity, fracture parameters, durability, etc.). The application of the AE
method for continual monitoring of cement composites during the setting and
hardening can be instrumental in the early detection of micro disruptions.
This information about the behaviour of the material may be later used for
improving the material composition or adjusting the curing method which
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csimonovan both lead to designing cement composite structures with better
properties and higher durability.

e The testing technique described herein is currently commonly used at the
Institute of Building Testing of BUT, FCE. The measurement results were
published in following papers (Kucharczykova et al. 2017, Topolat 2017)

The presented results were obtained within the implementation of the project No.
17-14302S “Experimental analysis of the early-age volume changes in cement-
based composites”, supported by the GACR - Czech Science Foundation.
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