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6. Plate strip in a stabilized temperature field and 
creep effect 

Katarína Tvrdá1 
1 Slovak University of Technology, Faculty of Civil Engineering, Bratislava, Slovakia,  

 

Abstract: Deflection and stress states of a plate strip with variable stiffness and Boussinesq half-
space subjected to actions of discontinuous temperature field under assumption of plane 
deformation are investigated. The hereditary creep of the plate and of the subgrade materials 
according to different constitutive equations is applied. The formulation and the solution of the 
basic integro-differential equation system are performed in Laplace′s transforms using an undirect 
way. The time dependent solution is constructed by means of  modified Erdélyi  Schapery 
algorithm. The numerical method with a detailed analysis of the obtained results is demonstrated 
on a numerical example. 

Keywords: plate strip, stress states, temperature, creep 

6.1. Introduction  
The temperature stresses and deformations can play significant, sometimes even 
prevailing part in the design of  foundation plates and structures. It is concerned 
the road and airdrome plates, the foundation plates in metallurgical and 
chemical plants, foundation plates and blocks of dams etc. The magnitude of the 
temperature stresses and deformations can depend on the thermo-physical 
properties of concrete, on the temperature of fresh concrete, on the exothermic 
reaction of cement, on the temperature of ambient environment, i.e. on that of 
air, water, and subgrade, and on the interaction mode of the foundation structure 
and the subgrade. In evolution of temperature stresses and deformations, the 
relaxation properties of material of  the foundation structures and  of the 
subgrade play a non negligible part. As will be shown further, while e.g. the 
deflections of the plates are getting larger, the bending moments and the shear 
forces are getting smaller. These findings can have a great importance from the 
viewpoint of the life time of the foundation structures. Only a sporadic attention 
has been paid in literature to the time dependent problems of temperature and 
deformations in massive concrete blocks and plates. Among the former sources 
the works of the Armenian School represented by N. Ch. Arutjunjan and his 
collaborators (Arutjunjan, 1955), (Zadajan, 1957), and those of the Polish 
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school headed by W. Nowacki (Nowacki, 1963) are to be mentioned. 
Nowadays, particular attention is paid to contact problems (Moravkova, 2017), 
(Farhatnia, 2017), (Korotchenko, 2017) but time-dependent deformations less 
(Mistrikova, 2007), (Mistrikova, 2012), (Sumec, 2010). This chapter deals with 
the temperature stresses and deformations of the plate strip with the rigid 
borders, which is freely supported on the half-space, due to temperature actions 
of the ambient environment. By means of stiff borders is simulated in solution 
the lateral concrete walls the stiffness of which can be considered as infinitely 
large with regard to the finite thickness of plate. For example, craft locks, 
sludge-digestion tanks, blocks of dams, and other. It is assumed that the ambient 
temperature is stabilized. The investigations is limited to the temperatures for 
which the thermal and material characteristics of the plate can be consider as the 
permanent magnitudes independent on the temperature. It is further 
contemplated that the materials of the plate and of the subgrade undergo the 
creep with time and that they fulfil the basic equations of the  theory of 
hereditary creep proposed by L. Boltzmann & V. Volterra (Boltzmann, 1970), 
(Volterra, 1913). That theory is based on the assumption of linear relationship 
between stresses and strains for which the law of superposition is valid. 
Experimental measurements show that the both asumptions are very well 
fulfilled till to the 40 percent of strength of materials. Constitutive equations of 
the hereditary creep are the most satisfying for the rheological properties of 
concrete structures and of the real subgrades in the time of their exploitation. 
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Fig. 6.1. Transient functions of creep D1 and those of relaxation R1 at uniaxial 
deformation 
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As the phenomena of creep and relaxation, i.e. the transient functions of creep 
and those of relaxation (Fig. 6.1) represent discontinuous functions of time, 
these physical variables are interpreted as so called Schwartz distributions 
(some type of the generalized functions with the carrier on the time half-axis 
<0, ∞). Such an interpretation permits to write down the constitutive equations 
in terms of the time invariant linear theory of the hereditary creep in a very 
compact form, as the equations with convolutions. Constructing the solution 
starting from the long term measurements for concrete (Loom and Base, 1990), 
(Neville, 1970) and for subgrade (Mesčjan, 1967), (Zareckij, 1993) it is 
assumed that concrete (subscript d) and subgrade (subscript z) are represented 
by quasielastic bodies having the instantaneous and the time variables  values of 
Poisson′s ratio practically constant:  

µd (0) = µd (t) = const, µz (0) = µz (t) = const. 
The basic equations are solved in Laplace′s transforms.The time dependent 
solution is constructed using Erdélyi − Scahapery method of inverse 
transformation modified by B. Novotný (Novotný, 1980). The formulation of 
the basic equations and their solution is represented using the dimensionless 
variable ξ given by the quocient of the real ordinate x and of a half of the 
foundation joint l/2, i.e. ξ =  2x/l and then α =  2a/l, β = 2b/l. 

6.2 Basic equations and their solution 
Assume that a plate strip with variable thickness is freely placed on a 
viscoelastic half-space and  has  a constant thickness h within the interval < -β, 
+β >, and that its stiffness is infinite within the extreme intervals < -1, -β > and 
< +β, +1 >. It is assumed that the plate strip on a finite area < -α, α > is 
subjected to a constant temperature T(z) H(t), where H(t) is Heaviside′s 
function, and that T(z) = 0 except this area. The thermal gradient is assumed to 
be variable along the thickness of the plate (Fig. 6.2). 

Fig. 6.2. Geometric scheme of the plate strip interacting with  the half-space in a 
discontinuous temperature field T(z)H(t). 
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The plate strip will be deformed due to influence of temperature. The stresses 
p(ξ,t) will arise on the contact of the strip with the half-space. The problem is to 
determine the magnitude and the distribution way of these stresses within the 
time t∈<0,∞). The stresses p(ξ,t) is determined from the equilibrium equations 
of the plate strip as a stiff entity 

 ( ) ( )
1 1

1 1

, 0, , 0p t d p t dξ ξ ξ ξ ξ
+ +

− −

= =∫ ∫   (6.1) 

and from the deformation condition 

 ( ) ( ), ,zw t v tξ ξ= −   (6.2) 

expressing the equality of the plate strip deflections w(ξ,t) and of the vertical 
displacements of the border (z = 0) of the half-space vz(ξ,t) in each point ξ of the 
interval < -1, +1 > of the foundation joint. Deriving the equations for the 
deflections of the plate strip and for its internal forces is started from the 
constitutive equations  in which the deformations of each element of plate are 
composed of the temperature deformation and of the viscoelastic deformation 
caused by temperature stresses. 
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τ ξ

= ∗ − +  −

= ∗ − +  −

=

 (6.3) 

The relationships (6.3) are obtained from the following adjoint equations of 
Duhamel −Neumann (Duhamel, 1838) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
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d
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T z

E
T z

σ ξ ε ξ µ α
µ

σ ξ µ ε ξ µ α
µ

τ ξ

= − +  −

= − +  −

=

   (6.4) 

by assignment of the correspondent viscoelastic equivalent (Kovařík, 1987). In 
equations (6.3) the strain εx(ξ,t) be means of the deflections w(ξ,t) of the middle 
plane of the plate stripis expressed as follows: 
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 ( ) ( )2

2 2

,
,
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x

w tz
t

∂ ξ
ε ξ

∂ξ
= −

 
 
 

ℓ
 (6.5) 

Then the stress resultants can be expressed, i.e. the bending moment and the 
shear forces in the following form (Fig. 6.3). 

Fig. 6.3. Differential element of the plate strip placed on the half-space with a volume 
of dV = dx dy h under the actions of contact stresses p and the section 
quantities Mx, My, Mxy, Qx, Qy. 
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For the deflection of the plate strip the following equation is valid 

 ( ) ( ) ( )
222

22 2

,1
,

2

2

w t
U t p t

∂ ξ∂
ξ

∂ξ ∂ξ

 
 

  ∗ =      
  

  

ℓ

ℓ
   (6.7) 

Where 

 ( )
3

[1]
1212(1 ) d

d

h
U R t

µ
=

−
   (6.8) 

represents the time function of the flexural stiffness of the strip which is 
obtained from the flexural stiffness for the elastic problem 

 
3

212(1 )
d

d

E h
U

µ
=

−
   (6.9) 

The vertical displacements of the border of the viscoelastic half-space are 
determined by assuming its planar deformations due to stresses p(ξ,t) from the 
following integral equation 
 

 

[ ]

( ) ( )

1
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1 _

1

(1 )
2( , ) ( ) *

( , ) 2 (1 )ln C
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z z

z

v t D t

p t t d t

µ
ξ

π

ξ µ ξ ξ δ ξ
+

−

+
=

  − − + +    
∫

ℓ

 (6.10) 

the elastic adjoint equivalent of which is the well-known Flamant′s equation 
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v
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µ
ξ

π

ξ µ ξ ξ ξ
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  (6.11) 

In Equation (6.10) C(t) represents an arbitrary function of time and in Equation 
(6.11) an arbitrary constant. Abbreviations in the above equations is given: 

 ( )
2

3
2

12
h

T

h

zT z dz
h

χ
−

= ∫    (6.12) 

Approach to the solution of the integro-differential system of basic equations 
(6.1), (6.7), (6.10), and (6.2) is used indirectly. As the temperature field is 
symmetric with regard to the plane ξ = 0, also the distribution of the contact 
stresses p(ξ,t) in foundation joint is symmetric. Therefore, let us chose the 
functions of the contact stresses in the form as follows 

 

 2 22
0

( )
( , ) ( ) ( )

1
n n

n

A t
p t a t Pξ ξ

ξ

∞

=

= +
−

∑  ( n � 0, 1, 2, ... )  (6.13) 

where A(t) and a2n(t) are the time functions, unknown for the present, and P2n(ξ) 
are Legendre polynomials of the first order. The n-th Legendre polynomial of 
the first order is defined as follows 

αT – the coefficient of thermal dilatation, 
Ed, Ez – Young moduli of the plate and of the subgrade materials, 
Rdl, Rzl – the transient relaxation functions, 
Ddl, 
Dzl 

– the transient creep functions of the plate and of the subgrade 
matrials at the uniaxial stress state, 

* – symbol that denotes the convolution product, 
[1] – symbol that denotes the derivation according to the theory of 

generalized functions (distributive derivation) defined over the 
time half-axis t > 0, 

δ(t) – Dirac′s delta function (distribution), 

Tχ  – the curvature of the middle plane of the strip due to temperature 
change only.  
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−

=

− −
=

− −∑   (6.14) 

 �n � 0, 1, 2, ... )                  -1 ≤ ξ ≤ +1   
where [n/2] means the integer of the number n/2. 
The first equilibrium condition (6.1) leads to the following Equation 

 ( ) ( )02 0A t a tπ + =   (6.15) 

The second condition (6.1) is fulfilled identically. As it can be seen from 
Equation (6.15), the resultant of the contact stresses equals zero and the stresses 
p(ξ,t) represent a self-loading system. The following relationships between the 
time functions A(t) and a2n(t) are derivated from the deformation condition 
(6.2). The deflections of the plate strip w(ξ,t) are composed from two parts: 
from the deflections wp(ξ,t) due to contact stresses p(ξ,t) and from the 
deflections wT(ξ,t) due to temperature T(z)H(t), i.e. 

 ( ) ( ) ( ), , ,p Tw t w t w tξ ξ ξ= +   (6.16) 

It is dealt with the deflections due to contact stresses (6.13). For the plate strip 
with absolutely stiff borders is given then in the following form 
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−  = ∗ − − +      

′ + + − − − − +   
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2 2
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2 2 1 ,
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w w H H
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∞

=

+ − − +  
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∑
  (6.17) 

where 

 ( )
( )

( )
2

1 [1]
13

12 1 d

dU t D t
h

µ
∗−

−
=   (6.18) 

( ℓ /2)2 was the inverse element of the flexural stiffness of the strip plate (6.8), 
and 
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 (6.19)  

were the delection functions of the strip plate due to particular terms of the 

approximation function (6.13). 

The deflections due to temperature have to fulfil the following differential 

equation 

 

22

2 22 2

( , )1 1
( ) * 0

2 2

Tw t
U t

∂ ξ∂
∂ξ ∂ξ

 
 
  =
    
    

    

ℓ ℓ
  (6.20) 

as well as the following conditions: 

In the middle (ξ = 0) 

 ( )w tT
I ξ
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,

=

=
0
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( )∂ ξ
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ξ

w tT
I
,

=

=
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0    ( )Q txT
I ξ
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,

=
=

0
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in the discontinuity point of the temperature field (ξ = α) 

 ( ) ( )w t w tT
I

T
IIξ ξ

ξ α ξ α
, ,

= =
=    

( ) ( )∂ ξ

∂ξ

∂ ξ
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in the abrupt change of stiffness (ξ = β) 
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= =
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ξ β ξ β
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= =
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and on the border (ξ = 1) of the plate strip 

 
( )M txT

III ξ
ξ

,
=
=

1
0

        
( )Q txT

III ξ
ξ

,
=
=

1
0

  (6.23) 

 

The equation (6.20) and the conditions (6.21) ÷ (6.23) is fulfilled by the 

following function 

 ( ) ( ) ( )
2

,
2

T Tw t KH t wξ ξ =  
 

ℓ
  (6.24) 

where 

 ( )1 d T Tµ α χΚ = +   (6.25) 

and 
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1 1
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1
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2

. 1 .

Tw H H

H H

H H

ξ ξ ξ ξ α α αξ

ξ α ξ β α αβ α ξ β

ξ β ξ
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 − − − + − − −     

− − −  

 (6.26) 

 

As it can be seen from Equations (6.24) and (6.25), the deflections due to 

temperature do not depend on the relaxation properties of the plate material, but 

on the character of the temperature field only. The influence of the temperature 

field is expressed by the curvature χT. It is given by the formulae (6.12). It 

depends on the character of the temperature gradient through the plate 

thickness. The temperature gradient can be linear, but also non linear. In both 

cases is calculated the curvature χT from the formula (6.12). In the case of the 

linear temperature gradient (Fig. 6.4) 
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Fig. 6.4. Linear temperature gradient along the plate thickness h 

 ( ) 0

T
T z z T

h

∆
= +   (6.27) 

where ∆T = Ts − Th and T0 = (Ts + Th)/2 is obtained 

 T

T

h
χ

∆
=   (6.28) 

In the case of non linear temperature gradient (Fig. 6.5) is approximated with a 
sufficint accuracy the temperature change in an arbitrary point of the plate 
thickness using the following expression 

 ( ) 3 2T z az bz cz d= + + +   (6.29) 

where 

 
( ) [ ]

( ) ( ) ( )

4 1 2 3 1 2 3 43 2

1 4 3 2 2 3 1 4
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8 16
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h h
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= − + − = − − +  

= − + − = + − +      

 

and T1, T2, T3, T4 are the discrete temperature values in the planes z = -h/2, -h/6, 
+h/6, +h/2. The curvature χT after substitution of (6.29) into (6.12), and after 
integration is as follows: 

 ( ) ( )4 1 3 2

1
11 27

20T T T T T
h

χ = − + −     (6.30) 
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Fig. 6.5. Non linear temperature gradient along the plate thickness h 

Let us return again to the deformation condition (6.2). The vertical 
displacements of the half-space border (z = 0) are caused only by contact 
stresses p(ξ,t). They determined them from the integral equation (6.10). If is 
assumed that the stresses (6.13) have a form (6.13), then the displacements 
vz(ξ,t) can be represented in the form as follows 
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are the veritcal displacements of the half-space border due to particular terms of 
the approximation function (6.13). After expressing the deflections w(ξ,t) and 
vz(ξ,t) according to (6.16), (6.27), (6.24), and (6.31), respectively, and after 
modification, the deformation condition leads to the functional equation for the 
infinite sequence of the time functions A(t) and a2n(t), as follows: 
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This equation is to be fulfilled identically for all points of the interval -
1 < ξ < +1 (n = 0, 1, 2, …) and in the each instant t∈<0, ∞). The time function 
of the relative flexural stiffness of the plate strip  is defined by the convolution 
relationship 
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  (6.33) 

The equations (6.15) and (6.32) are solved using collocation method in the 
space of Laplace′s transforms. Applying collocation method are not fulfiled the 
deformation condition for each ξ of the interval < -1, +1 > of the foundation 
joint, but in a finite number of the discrete points ξ = 0,2; 0,4; 0,6; 0,8, and 1,0 
only. (Equation (6.32) is satisfied for negative arguments ξ because of 
symmetry. In the middle of the plate strip the equation is satisfied  in advance 
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because of the first condition (6.21)). In such a way, are obtained together with 
the equilibrium equation (6.15) a finite system of six functional equations for 
six unknown time functions A(t) and a2n(t) (n = 0, 1, 2, 3, 4). The time unknown 
t from in such a way obtained equation system are eliminated by means of the 
following Laplace integral transformation 

 { }
0

( , ) ( , ) ( , ) )tf t f f t e dtλξ ξ λ ξ
∞

−= = ∫ɶL   (6.34) 

where λ is the parameter of the Laplace transformation. Consequently, is started 
from the following equations 

 0( ) 2 ( ) 0A aπ λ λ+ =ɶ ɶ   (6.35) 
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The Laplace′s transforms of the holomorphic functions of the relative flexural 
stiffness of the plate strip and its flexural stiffness (6.8) with regard to the 
transformant 
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resulting from (Kovařík, 1987) results in the following relations  
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The originals A(t) and a2n(t) of the holomorphic functions ~
A t( )  and ~a t( ) are 

constructed applying numerical inverse transformation modified by 
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Erdélyi − Schapery method. The knowledge of the originals of time functions 
A(t) and a2n(t) permits to determine the stresses in the foundation joint of the 
plate strip, its deflections and its internal forces for different instants t. For the 
contact stress the approximation relationship (6.13) is valid. At the 
determination of the resultant deformations of the plate strip the following two 
cases should be distinguished: 

• when the material of the strip plate is not subjected to creep, then 
determining deflections are determined from the following relationship 
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where U and K  are the relationships (6.9) and (6.25) valid for an ideally elastic 
plate. 
• when the material of the plate strip is subjected to creep, then for the 

detemination of the time function of deflections are determined using the 
inverse transformation of its Laplace′s transforms according to the Erdélyi 
Schapery method 
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At the determination of internal forces the following common relationships are 
valid in both cases: 
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It is demonstrated the general procedure of the solution on the 
thermoviscoelastic analysis of the plate strip in metallurgical operation which is 
placed in a stabilised temperature field of ambient environment. 
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2.3. Examples and analysis of the obtained results 
Let us consider the plate strip having a constant stiffness ( β = 1 ) subjected to a 
high temperature T(z)H(t) on the whole range < -l/2, +l/2 > of its surface (Fig. 
6.6).  

 
 
 
 
 

Fig. 6.6. A road plate strip in a stabilized temperature field along the whole strip width l 

Stress and deformation states of such a strip are described by Equations (6.38), 
(6.39), and (6.40) where are determined the time functions A(t) and a2n(t) by 
inverse Laplace′s transformation of Equations (6.35) and (6.36). In Equation 
(6.36) the following function corresponds on the basis of  (6.26) for α = 1 and 
β = 1 to the temperature field given in Fig. 6.6: 

 ( ) ( ) ( )21
1

2Tw H Hξ ξ ξ ξ= − −     (6.41) 

and the curvature K is given by the relationship (6.25). As the holomorphic 
functions ( )~

k λ and the functions of the flexural stiffness of the strip ( )~
U λ , as it 

can be seen from (6.37), depend on the Laplace′s transforms of the transient 
creep functions of the materials of the plate strip and of the subgrade, are 
introduced them for the plate material (concrete) according to J. E. Prokopovič 
− V. A. Zedgenidze (Prokopovič and Zedgenidze, 1980) 
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and for the material of subgrade according to (Mesčjan, 1967) 
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  (6.43) 

where 
 Ed, Ez (Mpa), C0 (MPa-1), B1, B2, ( )1 1 day ,γ ( )2 1 day ,γ ( )1 1 day ,δ

( )2 1 day ,δ are free parameters among which B1 and B2 vary within the limits 
0 < B1 < 1, 0 < B2 < 1 and their sum equals B1 + B2 = 1. Laplace′s transforms of 
the functions (6.42) and (6.43) are  the following holomorphic function 
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On the basis (6.44) the transformants 
~ ~
k( ) and U( )λ λ  can by represented in the 

following final form 
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where 
k – the coefficient of the relative flexural stiffness, 
U – the flexural stiffness of the plate strip for the elastic problem given by the 

relation (6.9), 
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When is satisfied Equation (6.36) only in points ξ = 0,2; 0,4; 0,6; 0,8, and 1,0 at 
the relative flexural stiffnesss k = 20 and at the free parameters 
Ed = 2,9.104 MPa; Ez = 4,374.102 MPa; C0 = 0,28.10-4 MPa-1; B1 = 0,43; B2 = 
0,57; 1 0,0018.1 dayγ = ; 2 0,01.1 dayγ = ; 1 0,15.1 day,δ =

2 0,02.1 day ,δ =  the following inverted values of the roots correspond at 
instants t = 0, 5, 15, and ∞ days in Table 6.1. 
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Table 6.1. Inverted values of the roots 

The instant t = 0 t = 5 days t = 15 days t = ∞ 
A 1,992058 L 1,295969 L 0,722833 L 0,606914 L 
a0 -3,129118 L -2,035704 L -1,135424 L -0,953339 L 
a2 1,240038 L 1,006344 L 0,644525 L 0,506457 L 
a4 0,595200 L 0,285634 L 0,115315 L 0,114697 L 
a6 0,100727 L 0,054153 L 0,026399 L 0,024023 L 
a8  0,014467 L 0,008272 L 0,004147 L 0,003678 L 

 
where  

 2
L=

2

UK

l 
 
 

  

 

 

Fig. 6.7. Graphs of contact stresses p(ξ, t) and of deflections w(ξ, t) corresponding to 
the different instances t due to continuous temperature field according to Fig. 
6.6, when the simultaneous creep of plate and of half-space occurs.  
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The graphs of the corresponding contact stresses, deflections, bending moments, 
and shear forces are given in Fig. 6.7 and Fig. 6.8. As it can be seen on Fig. 6.7 
and Fig. 6.8, while the deflections increase with time, the stresses in the 
foundation joint, the bending moments and the shear forces decrease rapidly. 

 

 

Fig. 6.8. Graphs of bending moments M(ξ, t) and of shear forces Q(ξ, t) in different 
instances t due to temperature field according to Fig. 6.6, when creep of 
material both of the plate and that of the subgrade occur simultaneously. 
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Fig. 6.9. Time dependent change of deflections in the middle of the plate strip, when 
creep occurs only in the material of plate (curve a), when creep occurs only in 
the material of subgrade (curve b), and when creep occurs in the material of 
plate, as well in that of subgrade simultaneously (curve c). 

 

Fig. 6.10. Time dependent change of bending moments in the middle of the plate strip, 
when creep occurs only in the material of plate (curve a), when creep occurs 
only in the material of subgrade (curve b), and when creep occurs in the 
material of plate, as well as in that of subgrade simultaneously (curve c). 
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Fig. 6.11. Change of maximum deflections of the plate strip in time t at simultaneous 
creep of plate and of subgrade, when flexibility of the strip is gradually 
obtaining the following values: k = 0, 20, 40, …, 120. 

 

Fig. 6.12. Change of maximum bending moments of the plate strip in time t at 
simultaneous creep of plate and of subgrade, when flexibility of the strip is 
gradually obtaining the following values: k = 0, 20, 40, …, 120. 
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The maximum deflection in the middle of the plate (ξ = 0) at instant t = ∞ 
increased 2,8-times, while the bending moment decreased 2,98-times at the 
same instant in comparison with the state of its instantaneous warming ( t = 0 ). 
As to shear forces, this decrease represent in the cross section ξ = 0,7 
a multiplier of 3,03. Further, in Fig. 6.9 and Fig. 6.10 the change of the 
maximum moments and that of bending moments in the middle of the plate strip 
( ξ  = 0 ) on the whole time half-axis t ∈ <0, ∞) can be monitored at a constant 
relative flexural stiffness of 20, for three possible cases of creep of the plate and 
subgrade materials. In Figures is denoted by the letter  a  the solution, when 
only the material of plate was subjected to creep and then is substituted δ1 = 0 
and δ2 = 0 in the relationships (6.45), further by the letter  b   the solution when 
material of the subgrade showed relaxation abilities and the plate material was 
elastic ( B1 = 0,  B2 = 0,  γ1 = 0, and γ2 = 0 ), and finally by the letter  c  the 
solution when both materials of the plate and of the subgrade was subjected to 
the creep  at the same time with the input data as they was given above. As it 
can be seen in Fig. 6.9 and Fig. 6.10, while the deflections in all three cases 
increase gradually, the variation of the bending moments is directly surprising. 
The change of the maximum deflections and of the bending moments in the 
middle of the plate is given in Fig. 6.11 and Fig. 6.12 in dependence on the 
relative flexural stiffness at the simultaneous creep of the materials of the plate 
and of the subgrade. The area of the change of the mentioned calculation 
magnitudes is limited by the lines t = 0 and t = ∞. That area, as it can be seen, is 
very broad owing to the relaxation properties of plate and subgrade and leads to 
the contradictory results. While the deflection at time t = ∞, at the relative 
flexural stiffness k = 120 increased 5,08-times, the bending moment decreased 
1,54-times at the same relative flexural stiffness in comparison with the state of 
instantaneous warming. 

2.4 Conclusions 
Stress and deformation states of a plate strip with variable stiffness and 
Boussinesq half-space subjected to actions of discontinuous temperature field 
under assumption of plane deformation are investigated, the hereditary creep of 
the plate and of the subgrade materials according to different constitutive 
equations is applied. The formulation and the solution of the basic integro-
differential equation system are performed in Laplace′s transforms using an 
undirect way. The time dependent solution is constructed by means of  modified 
Erdélyi - Schapery algorithm. The numerical method with a detailed analysis of 
the obtained results is demonstrated on a numerical example in the chapter 6.3. 
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