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14. Fundamental formulae for the calculation of shear 

flexible rod structures and some applications 

Mariusz Ruchwa 
Koszalin University of Technology, Faculty of Civil Engineering Environmental  

and Geodetic Sciences, Koszalin, Poland, orcid.org/0000-0003-2260-8423 

Abstract: Presented approach concerning analysis of rod structures with shear effects, interacting 
or not with elastic foundation constitutes consistent and precise solution of the problem. It is 
characterized by an universal approach in problem description, allowing for analysis of arbitrary 
particular cases. 

Keywords: structural analysis, static, Timoshenko beam, elastic foundation 

14.1. Introduction  

At present, due to high requirements concerning the results of numerical analysis 
of structures, the necessity of taking into account effects of shear on calculated 
values of displacements and stresses is of growing importance – also for rod 
structures (Filipkowski and Ruchwa, 1991, Pałkowski, 2009).  
For typical problems of structural analysis of rod structures subjected to shear 
effects the Timoshenko formulation is widely applied, possible to implement into 
Finite Element Method - FEM (Hughes, 2000, Reddy 2006). Common additional 
problems concern shear locking and elimination of locking (Belytschko, Liu and 
Moran, 2000) and also introduction of shear effects for various transversal 
sections of rods (Cowper, 1966, Filipkowski, 1989). The examples of such 
analyses of frame structures are available in literature (Filipkowski and Ruchwa, 
1991), as well as examples for elements taking into account shear effects for 
frame-strut bars in mast core (Ruchwa and Matuszkiewicz, 2010). 
Although the description of shear effects for basic rod elements is evident 
(but still used rarely), the entire theoretical description for the rod interacting with 
foundation is still an interesting problem. Many authors proposed solutions 
obtained using various computational approaches: Finite Differences Method 
(Sadecka, 2010), Method of Discrete Singular Convolution - DSC (Akgöz et al., 
2016) and Finite Element Method (Frydrýšek, Jančo and Gondek, 2013). 
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Very valuable are formulations assuming the interaction of the bar with two-
parameter elastic foundation without shear effects (Teodoru and Muşat, 2008, 
Dinev, 2012) and with shear ffects (Filipkowski, 1989, 1992, Sienkiewicz and 
Ruchwa, 1992, Shirima and Giger, 1992).  
In this paper the relatively simple and consistent approach taking into account 
the analytic solution for bars with shear effects, with- or without interaction with 
two-parameter elastic foundation. This solution was obtained by Filipkowski 
(Filipkowski, 1989) and developed in following years (Filipkowski and Ruchwa, 
1991, Filipkowski and Shirima, 1991, Sienkiewicz and Ruchwa, 1992, 
Filipkowski, 1992, Shirima and Giger, 1992). 

14.2. Theoretical background 

The considered structure is a beam of monosymmetric cross-section, with shear 
effects, located on two-parameter elastic foundation. Linear-elastic material 
model is assumed, as well as small displacement analysis (Fig. 14.1). Details 
concerning foundation will not be discussed, because necessary information can 
be found in many studies (Dembicki et al., 1988, El-Garhy and Osman, 2002).  
 

 

Fig. 14.1. Timoshenko beam on two-parameter elastic foundation 

Entire potential energy of the beam is defined by a functional: 

 
( )
( ) ( )

L 2 21
c 2 0

L L2 21
12 00

(v, ) EJ( ) GA(v ) p(x)v dx

kv k dx Tv M

′ ′Π ϕ = ϕ + κ −ϕ − +

+ + ϕ − + ϕ

∫

∫
 (14.1) 

where the following parameters are used: vertical displacement of the beam (v), 
flexural angle of rotation (φ), longitudinal modulus of elasticity (E), transversal 
modulus (G), section area (A), moment of inertia (J), shear coefficient (κ) 
of cross-section of the beam, as well as parameters of elastic foundation (k, k1), 
length of the beam (L), distributed load (p(x)) and loads on beam ends (T, M).  
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Due to principle of potential energy minimum the state of static equilibrium 
is defined by the equation:  

 c (v, ) 0δΠ ϕ =  (14.2) 

which gives the following differential equation:  

 1 1EJf (x) (k k EJ)f (x) k(1 k )f (x) p(x)′′′′ ′′− + η + +η =  (14.3) 

where: 
 1 ( GA)η= κ  (14.4) 

The geometrical and statical quantities are defined by relations:  

 1v(x) (1 k )f (x) EJf (x)′′= + η − η  (14.5) 

 (x) f (x)′ϕ =  (14.6) 

 1(x) v k f (x) EJf (x)′ ′ ′′′ψ = − ϕ = η − η  (14.7) 

 1T(x) EJf (x) k f (x)′′′ ′= − +  (14.8) 

 M(x) EJf (x)′′=  (14.9) 

where: 
 1 1 2 2 3 3 4 4f (x) D D D D= Φ + Φ + Φ + Φ  (14.10) 

is the solution of homogeneous differential equation, where the constants are 
defined by relations 14.5 ÷ 14.9, and the final result may be written in a following 
form:  

 

vv v vT vM i

v T M i

Tv T TT TM i

Mv M MT MM i

B B B B vv(x)

B B B B(x)

B B B B TT(x)

B B B B MM(x)

ϕ

ϕ ϕϕ ϕ ϕ

ϕ

ϕ

    
     ϕϕ    =                

 (14.11) 

or 

 { } { }v Q M iV(x) {B } {B } {B } {B } Vϕ =  i i i i
 (14.12) 

and in a brief form 

 { } [ ]{ }iV(x) B(x) V=  (14.13) 

where: 

 { }iV  and { }V(x)  are the state vectors (initial and resulting), 

 [ ]B(x)  is the transfer matrix.  
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If the beam is loaded on its length (Fig. 14.2) it is necessary to consider 
the additional vector of load { }C(x)  

 { } [ ]{ } { }iV(x) B(x) V C(x)= +  (14.14) 

a)  b) 

   

Fig. 14.2. Beam load a) concentrated force, b) distributed load.  

Applying Macaulay bracket 

 
0 , x t

B x t
B(x t), x t

<
− = 

− ≥
 (14.15) 

for the concentrated force (Fig. 14.2a), relation 14.14 may be written as follows: 

 { } [ ]{ } { }i QV(x) B(x) V B x t P= + −
i

 (14.16) 

For the distributed load (Fig. 14.2b), his relation has a following form: 

 { } [ ]{ } { }
1

x

i Qt
V(x) B(x) V B (x t) p(t)dt= + −∫ i

 (14.17) 

Generally, for arbitrary load, the equation 14.14 may be applied to describe 
the kinematic and static entities inside the beam element, included a complex 
structure, as defined in matrix description of displacement method or Finite 
Element Method (Pietrzak, Rakowski and Wrześniowski, 1986, Megson, 2014, 
Kassimali, 2012). Equation 14.14 may be applied also to describe the relations 
between state vectors in initial and final node of beam element (in its own local 
coordinates) (Fig. 14.3) taking into account the internode influence load vector 
as 
 { } [ ]{ } { }k iV B(L) V C= +  (14.18) 

where: 

 { } { }T

v T MC C C C Cϕ=  (14.19) 
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Fig. 14.3. Timoshenko beam element on two-parameter foundation with general 
internode load.  

For concentrated force we obtain:  

 { } { }TC B (L t) P= −
i

 (14.20) 

and for distributed load:  

 { } { }2

1

t

Tt
C B (L t) p(t)dt= −∫ i

 (14.21) 

Relation 14.18 can be rewritten: 

 k ii ii i

k ii ii i f

{ } [B ] [B ] { } {C }

{f } [B ] [B ] {f } {C }
δδ δ       

= +      
       

 (14.22) 

and leads to the following form: 

 

1 1
i iik ii ik

1 1
k kki kk ik ii kk ik

1
ik

1
fkk ik

{ } {f }[B ] [B ] [B ]

{ } {f }[B ] [B ][B ] [B ] [B ][B ]

{C }[B ] [0]

{C }[B ][B ] [1]

− −

− −

−
δ

−

δ −    
= +     δ−     

   
+   

−   

 (14.23) 
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which is known as equilibrium equation for the element:  

 [ ]{ } { } { }0
e e e ek f fδ = +  (14.24) 

used in matrix displacement method and Finite Element Method, where:  

 [ ]ek  - stiffness matrix, 

 { }eδ  - displacement vector, 

 { }ef  - vector of nodal forces, 

 { }0
ef  - vector of resultant internodal loads for the element. 

Advantegously is to use the element’s stiffness matrix in the following form: 

 [ ]
2 2

e 3

2 2

L L

L L L LEJ
k

L LL

L L L L

γ ν −ε δ 
 ν α −δ β =
 −ε −δ γ −ν
 
δ β −ν α 

 (14.25) 

and the vector of resultant internodal loads as:   

 { }

0
vi

20
0 i
e 330

Tk
2 30

Mk

CL 0 0T

CL L 0 0M EJ
f

CL L EJ 0LT

CL L 0 L EJM

ϕ

−ε δ    
    −δ β    = =    γ −ν −       −ν α −    

 (14.26) 

Relations 14.26 and 14.14 show the possibility to consider the arbitrary internodal 
loads. Examples of concentrated loads are show in Table 1. For similar distributed 
loads the equations  14.20 and 14.21 should be used. 

The obtained equations 14.14 and 14.24 also 14.25 and 14.26 allow to apply 
the solution introducing the discretization of the structure known from Finite 
Element Method, and the implementation of above mentioned equations into 
realization of these methods.  

Of course the given description may be in a simple way completed with the state 
of loads corresponding to bending in perpendicular plane, longitudinal load and 
torsion. Due to known solutions concerning these problems they will not be 
considered in this study (Cook, 2002, Megson, 2014, Akgöz et al., 2016). 
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Table. 14.1. Loads and corresponding {C} 

Load case {C} 

 

{ } { }vC B (L t) v= − ∆
i

 

 

{ } { }TC B (L t)ϕ= − ∆ϕ
i

 

 

{ } { }TC B (L t) P= −
i

 

 

{ } { }MC B (L t) M= −
i
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14.3. Influence of shear for rods without foundation 

Presented relations in this case lead to known equations concerning 
the Timoshenko beam element. Transfer matrix has a following form:  

 [ ]

( )
2

2 2

2

x x
1 x x 6 L

6 EJ 2 EJ

x x
B(x) 0 1

2 EJ EJ

0 0 1 0

0 0 x 1

 −
− µ 

 
 −

=  
 
 −
 

−  

 (14.27) 

where 

 
2 2

EJ EJ

L GA L
µ = η =

κ
 (14.28) 

and the coefficients of element stiffness matrix:  

 
1 3

4
1 12

+ µ
α =

+ µ
 

1 6
2

1 12

− µ
β =

+ µ
    (14.29) 

 
1

6
1 12

δ = ν =
+ µ

 
1

12
1 12

γ = ε =
+ µ

 

For Bernoulli-Euler beam theory the 0µ =  should be assumed. 

Describing the influence of shear, the important factor is the shear stiffness, 
defined in a literature as one of four possible denominations 

 z v

GA
GA GA Sκ = = =

k
 (14.30) 

The shear coefficient (κ) can be calculated from the following relation:  

 
2

2

2
A

J

S
A dA

b

κ =

∫
  (14.31) 

In Table 14.2. the examples of various shear coefficients are given. 
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Table. 14.2. Examples of shear coefficients  

Section Shape Coefficient 

Circle 
(*) 

 

( )6 1

7 6

+ ν
κ =

+ ν
 

Rectangle 
(*) 

 

( )10 1

12 11

+ ν
κ =

+ ν
 

Thin-Walled  
I - Section 

(*) 

 

210(1 )(1 3m) / pκ = + ν + , 

m 2bt / hg= , 

n b / h= , 
2 3

2 3

2 2

2 2

p 12 72m 150m 90m

(11 66m 135m 90m )

30n (m m )

5 n (8m 9m )

= + + + +

+ν + + + +

+ + +

+ ν +

 

Sandwich 
(**) 

             

c c

m

E A h

G b
µ =  

Truss 
(***) 

 

2
v kS EA sin cos= α α  

 (*) − Cowper G.R. (Cowper, 1966), 
 (**) − Filipkowski J. (Filipkowski, 1989), 
 (***) − Pałkowski Sz. (Pałkowski, 2009).  
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In order to describe the influence of shear, the adequate numerical analyses have 
been performed for the cantilever beam loaded with concentrated force 
(Fig. 14.4). Steel I-section has been assumed, similar to I240, with following 
characteristics: E = 210 GPa, G = 81 GPa, A = 46,111 cm2, J = 4253,3 cm4, 
κ = 0,4423 (calculated from equation 14.31) and variable L (Table  14.3), 
in relation to assumed L/h, where h = 240 mm.  

 

Fig. 14.4. Cantilever beam loaded with concentrated force   

Calculations of displacement (v) in B have been performed according 
the Timoshenko beam (vT) and Bernoulliego-Eulera (vBE) theories, consistent 
equations 14.27 ÷ 14.31 using MATLAB system, applied also in FEM analyses 
(Ferreira, 2009). 
As reference results, in order to evaluate the consistence of solution the 3D Finite 
Element Method analysis has been performed (vFEM). In discrete numerical model 
the symmetry of the structure was applied. Three-dimensional brick elements 
have been applied in discrete FEM model, for each mesh built with hundreds 
thousands elements. Symmetry of the model and load relative to the vertical plane 
has been assumed. Static linear analyses were performed using ABAQUS 
(SIMULIA, 2014) computer code. The examples of obtained FEM results are 
show in Fig. 14.5. 
In Table 14.3. the displacements (vFEM, vT and vBE) and values of relative 
percentage errors for Timoshenko (δvT

FEM) oraz Bernoulli-Euler (δvBE
FEM) 

models (in relations to FEM solution) as well as solution error of  Bernoulli-Euler 
model in relation to Timoshenko (δvBE

T) model.  
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Fig. 14.5. Distribution of vertical displacements obtained by FEM analysis, for L/h=4 
(values in meters)  

 

Table. 14.3. Displacements and relative percentage errors  

L/h 
[-] 

vFEM
 

[mm] 
vT

 

[mm] 
vBE

 

[mm] 
δvT

FEM 
[%] 

δvBE
FEM 

[%] 
δvBE

T 
[%] 

12 3,6320 3,6356 3,5660 -0,10 1,82 1,92 

10 2,1194 2,1217 2,0636 -0,11 2,63 2,74 

8 1,1018 1,1031 1,0566 -0,12 4,10 4,22 

6 0,4800 0,4806 0,4457 -0,12 7,14 7,26 

5 0,2866 0,2870 0,2580 -0,12 10,01 10,12 

4 (*) 0,1551 0,1553 0,1321 -0,14 14,84 14,97 

3 (*) 0,0730 0,0732 0,0557 -0,24 23,65 23,83 

(*) – In author’s opinion, beam theory can be used for L/h above 5, results for L/h = 3 
and  4 are shown only for demonstrative purposes. 
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The good consistence between FEM solutions and results for Timoshenko beam 
can be observed, even for L/h < 5. Results for Bernoulli-Euler model, for shorter 
cantilevers have growing error values (to 24%). 

Assuming the shear coefficient κ = 0,4055, calculated according Cowper G.R. 
(Cowper, 1966), see Table 14.3, values δvT

FEM are growing, and in relation to  L/h 
have the values from -0,28% to -2,41%. If we assume the approximate value 
of coefficient κ = 0,4034 (calculated as relation of the web area to the total 
section area) the values of δvT

FEM will slightly grow and have the values between 
-0,29% and -2,55%.  
More examples of differencies between Timoshenko and Bernoulli-Euler models 
are available in publication of Filipkowski and Ruchwa (Filipkowski and 
Ruchwa, 1991). 

14.4. Beams on elastic foundation 

Looking for solution in the case of the beam interacting with two-parameter 
elastic foundation, in order to solve the differentia equation 14.3 it is necessary 
to solve the homogeneous equation with auxiliary coefficients:  

 1 1b (k k EJ) EJ= + η  2 1b (1 k )k EJ= + η  2
3 2 1b 4 b b=  (14.32) 

According to the values of parameter b3, the equation has two variants (cases) 
of solution:  

• Variant I (a.k.a. strong foundation)  - 3b 1≥  (14.33) 

• Variant II (a.k.a. weak foundation)  - 3b 1<  (14.34) 

If we assume additional parameters, defined with equations  

 4
1(1 k )k EJλ = + η  LΛ = λ  (14.35) 

 2
2k EJ= λ  d 1 2k k k= +  r 1 2k k k= −  (14.36) 

 dA 1 k= + η  rB 1 k= + η  1C 1 k= + η  (14.37) 

the relations 14.35 ÷ 14.51. will give the exact transfer and stiffness matrices 
for both variants of solution for Timoshenko beam on two-parameter elastic 
foundation.   
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Variant I (strong foundation) 

 1

2

b1
a 1

2 2 b

 
= −  

 
 1

2

b1
b 1

2 2 b

 
= +  

 
 S 2ab=  (14.38) 

 sin(a x) sinh(b x)1φ = λ λ  2 sin(a x) cosh(b x)φ = λ λ  
   (14.39) 
 3 cos(a x) sinh(b x)φ = λ λ  4 cos(a x) cosh(b x)φ = λ λ  

Table. 14.5. Transfer matrix (for strong foundation) 

 v{B }
i

 (14.40)  {B }ϕi  (14.41) 

2 2

vv 1 4

a A b B
B

SC

−
= φ + φ  

v 2 3

b a
B

SC SCϕ

λ λ
= − φ + φ  

dr
Tv 2 3

a kb k
B

SC SC

λλ
= − φ + φ  

2
Mv 1

k
B

SC
= − φ  

v 2 3

b a
B

S Sϕ = φ + φ
λ λ

 

2 2
d r

1 4
2

a k b k
B

Skϕϕ

+
= φ +φ  

2 2 2 2
d r

T 1
2

a k b k
B

Skϕ

+
= φ  

dr
M 2 3

a kbk
B

S Sϕ = φ + φ
λ λ

 

  (14.42)  M{B }
i

 (14.43) 

vT 2 3
2 2

b B a A
B

S k S k
= φ − φ

λ λ
 

T 1
2

1
B

Skϕ = φ  

2 2
d r

TT 1 4
2

a k b k
B

Sk

+
= φ −φ  

MT 2 3

b a
B

S S
= φ + φ

λ λ
 

vM 1
2

1
B

Sk
= − φ  

M 2 3
2 2

bB a A
B

SCk SCkϕ

λ λ
= − φ − φ  

TM 2 3

b a
B

SC SC

λ λ
= − φ + φ  

2 2

MM 1 4

a A b B
B

SC

−
= φ −φ  

  

T{B }
i
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Wariant II (weak foundation)  

 1

2

b1
a 1

2 2 b

 
= − +  

 
 1

2

b1
b 1

2 2 b

 
= +  

 
 S 2ab=  (14.44) 

 sinh(a x) sinh(b x)1φ = λ λ  2 sinh(a x) cosh(b x)φ = λ λ  
   (14.45) 
 3 cosh(a x) sinh(b x)φ = λ λ  4 cosh(a x) cosh(b x)φ = λ λ  

Table. 14.6. Transfer matrix (for weak foundation) 

 v{B }
i

 (14.46)  {B }ϕi  (14.47) 

2 2

vv 1 4

a A b B
B

SC

+
= − φ + φ  

v 2 3

b a
B

SC SCϕ

λ λ
= − φ + φ  

dr
Tv 2 3

a kb k
B

SC SC

λλ
= − φ + φ  

2
Mv 1

k
B

SC
= − φ  

v 2 3

b a
B

S Sϕ = φ + φ
λ λ

 

2 2
d r

1 4
2

a k b k
B

Skϕϕ

− +
= φ +φ  

2 2 2 2
d r

T 1
2

a k b k
B

Skϕ

− +
= φ  

dr
M 2 3

a kbk
B

S Sϕ = φ + φ
λ λ

 

 T{B }
i

 (14.48)  M{B }
i

 (14.49) 

vT 2 3
2 2

b B a A
B

S k S k
= φ − φ

λ λ
 

T 1
2

1
B

Skϕ = φ  

2 2
d r

TT 1 4
2

a k b k
B

Sk

− +
= φ −φ  

MT 2 3

b a
B

S S
= φ + φ

λ λ
 

vM 1
2

1
B

Sk
= − φ  

M 2 3
2 2

bB a A
B

SCk SCkϕ

λ λ
= − φ − φ  

TM 2 3

b a
B

SC SC

λ λ
= − φ + φ  

2 2

MM 1 4

a A b B
B

SC

+
= − φ −φ  
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Table. 14.7. Stiffness matrix for element on elastic foundation 

 [ ]ek  - for strong foundation (14.50) 

 
( ) ( ) ( ) ( )a Asinh b cosh b bBsin a cos a

SC
Λ Λ − Λ Λ

α = Λ
∆

 

 
( ) ( ) ( ) ( )a Asinh b cos a bBsin a cosh b

SC
Λ Λ − Λ Λ

β = −Λ
∆

 

 
( ) ( ) ( ) ( )3 a Asinh b cosh b bBsin a cos a

S
Λ Λ + Λ Λ

γ = Λ
∆

 

 
( ) ( )2 sin a sinh b

SC
Λ Λ

δ = Λ
∆

 

 
( ) ( ) ( ) ( )3 a Asinh b cos a bBsin a cosh b

S
Λ Λ + Λ Λ

ε = Λ
∆

 

 
( ) ( )2 2 2 2

2 a Asinh b b Bsin aΛ + Λ
ν = Λ

∆
 

 ( )( ) ( )( )2 2
a Asinh b b Bsin a∆ = Λ − Λ  

 [ ]ek  - for weak foundation (14.51) 

 
( ) ( ) ( ) ( )a Asinh b cosh b bBsinh a cosh a

SC
Λ Λ − Λ Λ

α = Λ
∆

 

 
( ) ( ) ( ) ( )a Asinh b cosh a bBsinh a cosh b

SC
Λ Λ − Λ Λ

β = −Λ
∆

 

 
( ) ( ) ( ) ( )3 a Asinh b cosh b bBsinh a cosh a

S
Λ Λ + Λ Λ

γ = Λ
∆

 

 
( ) ( )2 sinh a sinh b

SC
Λ Λ

δ = Λ
∆

 

 
( ) ( ) ( ) ( )3 a Asinh b cosh a bBsinh a cosh b

S
Λ Λ + Λ Λ

ε = Λ
∆

 

 
( ) ( )2 2 2 2

2 a Asinh b b Bsinh aΛ + Λ
ν = Λ

∆
 

 ( )( ) ( )( )2 2
a Asinh b b Bsinh a∆ = Λ − Λ  
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14.5. Examples of Timoshenko beam on elastic foundation 

In order to show the possibilities of the considered algorithm, an example 
of a beam with shear effects and located on two-parameter elastic foundation 
was analyzed (Fig. 14.6).  
 

 

Fig. 14.6. An example of a Timoshenko beam on two-parameter elastic foundation.  

Assumed characteristics of the beam:   

• E = 33GPa, G = 14 GPa (concrete C30/37),  
• A = 3900 cm2, J = 915580 cm4, κ = 0,7008 (T-section), 
• L = 3 m / 6 m / 12 m (L/h = 5 / 10 / 20); 

characteristics of foundation: 
• k = 80 MN/m 
• k1 = 20 MN; 

applied load: 
• q = 10 kN/m (own weight), 
• P1 = P2 = P3 = 750 kN (concentrated load). 

Various configurations of analyzed example have been assumed: 3 variants 
of length, 3 variants of concentrated force Pi localization, two computational 
models was also assumed: beam with shear effects on two-parameter elastic 
foundation (T2) and beam without shear effects on Winkler foundation (BE1). 
All calculations were performed using MATLAB (MathWorks, 2015) code, 
applying the matrix version of displacements method and described relations. 
On Figs 14.7 ÷ 14.10 the obtained kinematic and static results are presented. 
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 a)  b) 

 
 c)  d) 

 
 e)  f) 

 

Fig. 14.7. Displacement function for the beam for various positions of concentrated 
load, length of the beam L = 3 m (a, b), 6 m (c, d), 12 m (e, f) computational 
model of the beam - variant T2 (a, c, e) and variant BE1 (b, d, f). 
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 a)  b) 

 
 c)  d) 

 
 e)  f) 

 

Fig. 14.8. Rotation angle for the beam for various positions of concentrated load,  
length of the beam L = 3 m (a, b), 6 m (c, d), 12 m (e, f) computational  
model of the beam - variant T2 (a, c, e) and variant BE1 (b, d, f). 
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 a)  b) 

 
 c)  d) 

 
 e)  f) 

 

Fig. 14.9. Transversal force function for the beam for various positions of concentrated 
load, length of the beam L = 3 m (a, b), 6 m (c, d), 12 m (e, f) computational 
model of the beam - variant T2 (a, c, e) and variant BE1 (b, d, f). 
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 a)  b) 

 
 c)  d) 

 
 e)  f) 

 

Fig. 14.10. Bending moment for the beam for various positions of concentrated load, 
length of the beam L = 3 m (a, b), 6 m (c, d), 12 m (e, f) computational 
model of the beam - variant T2 (a, c, e) and variant BE1 (b, d, f). 
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In Figures 14.7 and 14.8 considerable differences are visible for displacements 
and rotation angles for beams of 3 m length, loaded with forces P1 or P2. 
Differences are diminishing when the length grows (6 or 12 m) or we have  
the symmetric variant of load with force P3. The diagrams of internal forces given 
in Figures 14.9 and 14.10 show the bigger differences for transversal forces  
than for bendig moments. The biggest differences are observed for short beams 
(L = 3 m, L/h = 5) loaded with forces P1 or P2.  

14.6. Conclusions 

Presented approach concerning analysis of rod structures with shear effects, 
interacting or not with two-parameter elastic foundation constitutes consistent 
and precise solution of the problem. It is characterized by an universal and simple 
approach in problem description, allowing for analysis of arbitrary particular 
cases, concerning various variants of analysis – taking into account or not 
the shear effects (η = 0), interaction with two- or one-parameter elastic 
foundation (k1 = 0) and considering various loads: concentrated or distributed. 
This approach can be used for rods with consistent sections, three-layer sections 
or elements with truss sections. The presented equations can be applied in matrix 
version of displacement method or Finite Element Method.  
Due to assumed very often high economics of design solutions, we should not  
be content with traditional models ignoring shear effects. This will protect against 
incorrect assessment of the situation. 
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